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Abstract

In this paper we present a novel synthesis of image
processing algorithms which enable high performance
in an ATR system for ladar seekers. Ladar data pres-
ents both unique capabilities and problems for image
processing. We will discuss unique approaches to
incorporate the three dimensional nature of the data,
while handling range dropouts and the ground plane
background in a manner that allows for robust ATR
performance.

1. Introduction and Background

Laser radar (or ladar) sensors have been receiving
increased attention in recent years, as sensor systems
continue to improve, and may make a tactical ladar
sensor feasible. The desirability of ladar sensors arises
- from several different factors. First and foremost, the
nearly three dimensional nature of the data, and the
high resolution of detail that ladar sensors can provide
holds great promise for improved capabilities, such as
target/object recognition, terrain navigation, and aim-
point selection. In addition, while ladar sensors are an
active system, the emissions are much more focussed
and shorter range, making it more difficult to detect.

Given the unique nature of data that is provided by
current ladar sensors, novel image processing tech-
niques are required to make full use of the information
contained within the ladar data. To this end, we have
developed and/or implemented four advanced algo-
rithms, which when working in concert, provide an
improved system performance for automatic target
recognition. The algorithms perform four very differ-
ent tasks. The first task is noise removal and
mitigation, which is performed by a filtering process
called Peer Group Averaging (PGA)[1,2]. Following
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noise mitigation is an unique visualization transform
which also allows convenient correlation processing[3].
The correlation processing is performed using MACH
filters[4-10]. A final task, which could be performed at
any point in the processing stream, is image segmenta-
tion using total variational approaches[11-16]. All of
these algorithms will be covered in detail in the fol-
lowing sections.

2. Peer Group Averaging

2.1 Ladar Noise

While sensor noise can and does contribute to degra-
dation of range image quality, the most noticeable effect
are range dropouts . These occur when a pixel does not
receive enough energy to trigger a valid range detection.
This effect often results from atmospheric attenuation of
the laser beam or absorption by a surface. While the
nature of the noise can be very dependent upon how the
sensor handles dropouts, most sensors return a very
large or very small value for the range associated with a
dropout pixel. An example image contaminated by a
large number of dropouts can be seen in Figure 1. The
noise often is a hurdle that must be overcome when
simply trying to visualize the data. The dynamic range
of the sensors in question is 16 bit, and while the true
data may only lie in a narrow range band, the noise
often will cover the full 16 bit range, which can be
difficult to visualize.

2.2 Peer Group Averaging

Kenney et al have introduced a new non-linear ap-
proach to image enhancement known as peer group
averaging (PGA)[1,2]. It is a scheme based on the idea
that each pixel has a peer group of associated nearby
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pixels. The peer group is then used to modify the value
of the target pixel.

Peer group defined: For an image (or signal) g, the
peer group P(n,r) associated with pixel i consists of the
n pixels within the distance » of i that are nearest in
intensity to g(i) . Peer group averaging is the process of
replacing g(i) with the average over its peer group
P(n,r).

PGA is a stable algorithm which converges quickly.
While it is a non-linear algorithm which makes a gen-
eral convergence proof difficult, approximations can be
made for limited PGA approaches. For a longer discus-
sion on convergence see Kenney et al [2] . In addition
to the quick convergence of the PGA algorithm, it has
other properties which make it desirable for image
enhancement. Depending on the choice of window
radius » and peer group number 7 , a tradeoff between
edge preservation and noise removal can be made. In
addition, the algorithm can be implemented in an adap-
tive and multiscale method, giving greater flexibility in
terms of noise removal and image enhancement. Some
examples of PGA filtering on images can be seen in
Figures 2a-c.

3. Visualization Transforms

As mentioned in the previous section, visualizing ladar
data can be somewhat difficult due to the large dynamic
range of the data. PGA filtering mitigates the range
dropouts, which reduces the effective dynamic range,
but not enough so that detail is easily seen in the raw
range data. Some sort of transform is needed that re-
duces the dynamic range, takes advantage of the three
dimensional nature of the data, and produces an image
which preserves all the detail available in the original
data.

Often, researchers attempt to remove the ground plane
when dealing with ladar range imagery. The back-
ground provides a nearly linear gradient on which
objects of interest sit. If one could effectively remove
the ground plane, what remains could be considered
potential objects of interest for correlation based proc-
essing.  The projective transform [3] we have
implemented renders the background plane to a near
constant value, placing it on an equal footing with po-
tential targets for correlation based processing.

The transform we use to accomplish all of these goals
is actually rather simple. To take advantage of the three
dimensional information, one calculates a surface nor-
mal for every pixel in the range image. Following this
calculation, a virtual point light source location is cho-
sen (azimuth and elevation), and a dot product between
the pixel surface normal and the light source vector is

2

taken. One can interpret the result as the intensity
image that would result given a light source and a uni-
form reflectance for all pixels in the image. In addition,
the dot product also lends insight to how the surfaces
are oriented with respect to the virtual light source.

Some results of the projective transform can be seen in
Figures 3a-c. The transform can be performed as a
visualization tool, producing color (RGB) imagery, or
as a preprocessing step, resulting in gray scale imagery.
The new imagery now is scaled to {0,1}, and the back-
ground plane is now near a constant value.

4. MACH Filters

4.1 Introduction and Theory

Mahalanobis, Kumar ez a/ [4-12] have recently intro-
duced an advanced family of correlation filters known
as maximum average correlation height (MACH) filters.
The use of MACH filters for automatic target recogni-
tion (ATR) has been motivated by the properties of the
MACH filters. Since MACH filters are a correlation
filter, they can be implemented easily and operate at
high rates of speed given current hardware processing
speeds. The biggest hurdle in the past for any correla-
tion filter was the number of templates that needed to be
processed in order to cover a large range of aspect and
scale changes. MACH filters overcame this deficiency
by providing improved distortion tolerance. For exam-
ple, using some previous correlation approaches for
SAR data, one may have used one template for every 4
degrees of aspect, resulting in 90 templates for full
aspect coverage. In contrast, Mahalanobis [12] has
demonstrated excellent results using one template every
30 degrees, a 7 fold reduction in the number of tem-
plates needed. The tolerance of the filters is
incorporated through the selection of an appropriate
training set, and can be tuned to provide high (generali-
zation) or low (specificity) tolerance.

In the discussion of the MACH filters that follows,
bold lowercase indicates a column vector, while bold

uppercase represents a diagonal matrix. The filters
result from maximizing the ratio
|1 m]
J(h)y =" 1
(h) hSh (1

where h is the correlation filter and m is the average of
the training images in the Fourier domain. Each image
is lexigraphically ordered to form a vector. S is the
average similarity measure matrix
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In eq. (2) X are the individual training images,
again in the Fourier domain. The training image is
lexigraphically ordered and its elements placed on the
diagonal of X, while M is the mean training image,
arranged similarly to X,. Furthermore, all of the proc-
essing to generate the filters is performed in the Fourier
domain to gain translational invariance. It is possible
to perform the processing in other domains (e.g. wave-
let or spatial) but care must be taken to properly
register the training imagery.

The optimal filter h is then given by

h=8"m. 3)

Variants on the MACH filter can be achieved by vary-
ing the performance metric one wishes to maximize.
For example Refrieger [8] has developed optimal trade-
off synthetic discriminant filters (OTSDF’s) which
attempt to minimize the energy functional

E(h)=h"Qh-3h* m| @

where
Q=oaP+BD+yS. &)

S is as defined previously, P is the power spectral den-
sity of the expected noise, and D is the average power
spectral density of the training set. The constants
o,B,7, 8 are nonnegative and must satisfy
o + B2+ v + & =k where k is any positive constant.
Minimizing E(h) results in

84
—ZQ m. (6)

By varying the parameters, one can optimize filter
performance for the situation under study. If one sets
oa=B=0,the result is the MACH filter discussed
earlier. Further variations can be made to the basic
idea, including the extension to multiple class discrimi-
nation using distance classifier correlation filters [6]
(DCCF’s), which are able to distinguish between mul-
tiple classes of similar objects (e.g. T72’s vs. M1Al
tanks).

The class of MACH filters (which includes OTSDF's
and DCCEF's) was chosen for the feature detection for
several reasons. As discussed, the filters can incorpo-
rate varying degrees of distortion tolerance and can be
built to generalize classes of targets. Another benefit
of the algorithm is that the result is statistically opti-

3

heuristic methods. A final consideration is the compu-
tational efficiency. The MACH filters require no
segmentation or edge detection preprocessing and the
correlation step can be performed rapidly using dedi-
cated FFT hardware.

4.2 MACH implementation

To implement the MACH filters, one must first de-
cide upon a representative training set. Typically, the
training set consists of N<20 images from varying per-
spectives. A training set of one image will result in a
filter similar to the matched filter with no distortion
tolerance while having dozens of perspectives and
scalings will produce a filter with a broad response and
low discrimination properties. The filter h is first cal-
culated off-line from the training data. If one is using
the OTSDF’s, some parameter tuning can be done at
this point to maximize the correlation peaks for the
training data.

Following correlation of an input test scene with h,
the correlation scene must be processed to determine
the areas of interest. Previous correlation filters had
placed constraints on the correlation height, and classi-
fication was then accomplished by comparing the
correlation height of the test scenes to the constraint.
Generally, when using the correlation height as a metric
for detection and/or classification, a threshold must be
set. By changing this threshold one can trade off be-
tween the probability of detection and the probability of
false alarms, a lower threshold allowing more false
alarms and a higher threshold reducing the probability
of detection.

A second metric that is more stable and generally
yields better results is known as the peak to side lobe
ratio (PSR). Given a correlation peak p the PSR is
given by

psr =2=£ %
. (¢}

where U is the mean within an annulus around the peak,
and o is the standard deviation in the annulus. Typi-
cally one uses an inner radius of a few pixels (1-4) and
an outer radius of 6 or more pixels, depending on the
application. The benefit of this approach is that the
ratio is independent of illumination or amplification
effects. The overall peak height can be affected by
constant amplification but the ratio will remove this
problem. This metric works well in rejecting false
peaks due to clutter since most correlation surfaces for
clutter images will not contain a high percentage of
energy in a localized window.
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When dealing with ladar range images, the biggest
factor in designing the MACH filters is how to choose
the training set. Preliminary clustering analysis indi-
cates that the data varies much more rapidly with range
rather than aspect. This indicates that large aspect
changes can be grouped into one training set if one
keeps the range variance small. In our experiments, the
aspect range of the training sets was typically 20 de-
grees in azimuth, and the range variance was between
60 and 200m. Given a test image, a mean range refer-
ence was calculated and used to select the appropriate
range filter.

5. Variational Image Segmentation

While the MACH filter does not require image seg-
mentation to deliver adequate performance, and within
our system the projective transform has removed the
linear bias of the ground in the raw range image, image
segmentation at the appropriate time in the processing
stream may improve system performance. Since ladar
sensors provide range measurements, it is possible to
calculate size estimates of objects in an image, given an
accurate segmentation. The size estimates can be used
to cull possible false detections based on expected sizes
of targets, and this process can be performed at any
point in the processing stream.

Much has been written in the literature for image seg-
mentation [13-16], and a wide variety of approaches
exist. The approach we have chosen to use is a varia-
tional formulation of image segmentation.  The
approach is to minimize an energy functional which
measures three different properties,

E(b)=; [(u- gl dx+o,fIVuPdx +w3 [db  (6)

where u is the segmentation approximation to the image
(measuring fidelity to original image g). The second
term measures the smoothness of the approximation,
while the third term measures the length of all region
boundaries. In practice, a model for u is chosen before-
hand. The models most commonly used are piecewise
constant, piecewise linear, and piecewise quadratic.
Piecewise constant is often used since the second term
becomes zero and does not contribute to the energy
functional. The @, , o, , ) are weights applied to each
term, and can be used to determine a scale space de-
composition of the image [14].

In our application, rather than try to determine an ideal
set of weights, an adaptive procedure was adopted,
whereby a set number of segmented regions was speci-
fied. The segmentation was applied to both the raw
range imagery, using a piecewise linear or quadratic

4

model, or to the projective transformed data, using a
piecewise constant model. Each method seemed to
yield visually acceptable results. Examples of seg-
mented images can be seen in Figures 4a-c.

6. Computer Experiments and Results

6.1 Data Set and Experiment Parameters
As mentioned earlier, ladar sensors are currently being
considered for new tactical weapon systems, as ladar
range images are thought to provide more information.
Our goal was to integrate the image processing algo-
rithms in attempt to demonstrate ATR capabilities for
ladar range data. The dataset that is available for test-
ing consists of over 440 passes of captive flight tests.
Each pass consists of on the average ten images. The
imagery contains small mobile targets or fixed large
targets. The number of targets may vary from as few as
four to more than twenty, and the type of clutter varies
from no or light clutter to heavy clutter. The images in
Figures 3a-d show the types of targets and clutter that
are present in the imagery.  Parts of this data may be
available from www.vdl.afrl.af.mil .
Since this research effort is geared to algorithm devel-
opment rather than system evaluation, the data set used
for testing and evaluation was limited to five different
passes of the same target site with different approach
angles. Within this limited set there were over 1000
target detection opportunities.

For the experiments that follow, the MACH filters
were tuned to match the approximate aspect orientation
of the target data. In one pass, the aspect orientation
was 110 degrees (near broadside view), and the MACH
filters used to process this pass were generated using
training data from 92 to 112 degrees. The filters for the
other four passes used were similarly trained, where the
test data aspect orientation was near the limits of the
training data aspect ranges.  While this experimental
set up does not attempt to demonstrate that full aspect
coverage , the results are promising enough to merit
further efforts toward a full evaluation of MACH fil-
tering for ladar ATR. At the time these experiments
were performed, only one synthetic target type, an M60
tank, was available to generate training data and the
results shown are for detecting M60 tanks or other tank
like vehicles. ‘

As noted in the previous sections, each of the algo-
rithms used has their own parameter set. While it is our
eventual goal to characterize this ATR approach, con-
sidering as wide a variety of parameter combinations
and the resulting ATR performance, for this work we
will discuss some of the common values used for each
preprocessing step. In the PGA noise removal, a small
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3x3 pixel window was used, with a peer group of 6 or
less. These parameters have the effect of removing
dropouts from the range data, preserving edges in the
data, and the processing runs in a reasonable amount of
time. No other parameter sets for PGA were used. The
projective visualization transform has two parameters,
the angular location of the virtual light source (azimuth
and elevation). In this case, parameter selection was
based upon visual inspection. Due to an imbalance in
the ladar sensor used to collect data, a striping effect
could be seen in the range data, and the projection

transform parameters were selected to minimize this.

effect in the transformed data. Other parameter choices
were considered, but did not indicate that higher ATR
performance would be realized.

The MACH filters and the scoring algorithms for the
correlation plane have several parameters, and each one
could have a profound impact on the overall detection
performance. In building a MACH filter, there are three
parameters o, B, and 7y to be chosen. The first controls
how heavily the mean of the training data is weighted,
and also any noise suppression. The second and third
parameters control the shape of the correlation output.
A high B value will force much the correlation plane to
a delta function, requiring a close match between test
and training data, while a high y value will allow more
distortion by constraining the correlation plane to a
specific shape determined by the training data. A wide
variety of parameters were used, and the results will
note which particular set was used. v '

Once a correlation plane is generated, scoring and
detection takes place. The PSR (eq. 7) is calculated for
a local correlation peak using two parameters (the inner
window diameter and the outer window diameter). This
generates a list of potential detections which is com-
pared to a PSR threshold. All three of these parameters
vary with regard to range and other parameter values.
Typical window diameters range from 3 to 8 pixels for
the inner window and 8 to 30 pixels for the outer di-
ameter. The threshold varies between 5 and 12 and
often changes with range, as more pixels on target yield
a higher PSR.

Finally, use of the segmenter requires a choice of algo-
rithmic approach (piecewise constant or linear) and an
estimate of the number of segmented regions. If raw
range data was segmented, the segmentation algorithm
used a piecewise linear approach, otherwise piecewise
constant was used. The number of regions varied with
the range of the data, longer range data being seg-
mented in more regions. Long range data (2000m) was
segmented into approximately 100 regions, while for
close range data (800m) the number of regions selected
was 30.

5

6.2 Experiments, Results and Conclusions

The actual experiment was rather limited in scope.
Given the first three processing steps (noise removal,
projective transform, and MACH filtering) determine
whether both an acceptable probability of detection, Py
and probability of false alarm, P, could be achieved.
Following this, image segmentation was considered as
an additional processing step, either as a preprocessor
screening regions of interest in the image based on
target size, or as a postprocessor screening detections
passed by the MACH filter based on size.

Given a data pass, the approximate aspect orientation
of the targets was known and a corresponding synthetic
training set was generated that covered the range vari-
ance of the pass. Following training set generation, a
set of MACH filters were built with approximately 20
degrees of aspect tolerance (test aspect was chosen to
be at the end of the training range), and 120m of range
tolerance. This amount of distortion tolerance results in
13 filters being used to process one pass.

Each frame of test data undergoes preprocessing as
described in the previous sections. First PGA for noise
removal and image smoothing, followed by the projec-
tive transform. The next step is MACH filtering and
scoring of the correlation plane. Use of the segmenter
was limited to use as a postscreener, eliminating poten-
tial target detections based on size of the segmented
region. As will be seen in the results, applying the
segmenter in this fashion yielded unsatisfactory results.
This is due to the possible under- or oversegmentation
of potential targets. If a target vehicle is oversegmented
into too many smaller regions, the screening will elimi-
nate valid detections as being too small, while
undersegmentation will group the target into a larger
background region, again eliminating valid detections
as being too large.

Table 1 indicates the performance of the ATR system
for detection of M60 tanks. The first column reflects
the percentage of M60 tanks correctly detected over the
entire pass under study. The number of M60's in each
frame of a particular pass varies from frame to frame.-
At long ranges, there are up to 14 M60 tanks visible in
the scene, while at close range only 4 tanks are visible.
The second column is the average number of confusers
detected per frame. Any vehicle that is not an M60 is
labeled a confuser. Future work will distinguish be-
tween different confuser types, in order to better
characterize the algorithm. The third column is the
average number of clutter false alarms per image. Each
row of data refers to a particular pass and parameter set.
As expected an inverse relationship is seen between
detection rates and false alarm rates.
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On the average, detection rates were above 90% which
is a minimum acceptable threshold. The false alarm
rate seen in this experiment may be considered high,
and more work needs to be done to reduce the number
of false alarms. Use of the segmenter as a prescreener,
using liberal values for approximate sizes of potential
targets will be one approach considered. PGA filtering
does appear to increase detection results, but only when
the test data is very noisy. Under consideration is
adapting PGA to take advantage of knowledge of the
seeker. In terms of improving confuser recognition, the
tests will be expanded to contain more vehicle classes,
and the filter set will also expand to include DCCF's to
perform discrimination between similar classes.

In this work we have demonstrated the feasibility of
using MACH filters for LADAR ATR. The success of
the MACH filters was enabled using a unique combina-
tion of image processing techniques adapted to ladar
imagery. MACH filters have been shown to provide an
adequate level of performance both in terms of detec-
tion probability and in terms of false alarm occurrences
while dramatically reducing the number of filters
needed for traditional correlation based processing.
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Figure 1. Sample range image showing range dropouts as dark pixels

Figure 2a. Result of PGA processing on image in figure 1
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©

Figures 2b-c. Original raw range image (b) and PGA processing result (c).
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(c)

Figures 3a-c. Images showing the results of visualization transform. Images depict desert scrub clutter with a va-
riety of target vehicles.
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Figures 4a-c. Range imagery with segmentation boundaries overlaid

Parameter set 1
Parameter set 2
Parameter set 3
Parameter set 4

M60's detected Confusers per image False Alarms per image

81.0%
96.4%
86.2%
91.7%

25 0.32
53 6.1
22 1.1
21 3.9

Table 1. Detection rates for M60 tanks in ladar data.
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Computer, Megahertz

This computer

DEC Alpha, 600
Pentium {1, NT, 400
Pentium II, Linux, 400
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Pentium Il, Win98, 350
Sparc Ultra 2, 300
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HP 780, 180
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Sparc 10, Dual 160

SGl 02, 180

Sparc 2 (circa 1992)

Execution time

ODE LU Sparse 3-D
0.22 0.13 0.25 1.
0.70 0.30 0.43 0.
0.76 0.46 0.44 1.
0.65 0.42 0.52 1.
1.10 0.43 0.60 1.
0.84 0.51 0.50 1.
0.82 0.60 0.66 1.
1.02 0.67 0.64 1.
1.21 0.83 1.05 2.
1.69 0.46 1.13 2.
1.42 0.50 0.77 3.
2.12 1.07 1.29 4.

2.52 1.73 1.60 3.

10.00 10.00 10.00 10

2-D
11 0.52
94 0.73
61 1.19
72 1.19
63 1.19
34 1.85
73 1.31
78 2.50
45 1.57
83 2.24
39 2.98
50 3.08
99 2.62
.00 10.00
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